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Aviation anomaly detection literature

Exceedance detection:
Comparing against the pre-defined thresholds, which are identified by subject-matter experts.
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Aviation anomaly detection literature

Exceedance detection:
Comparing against the pre-defined thresholds, which are identified by subject-matter experts.

Cons:

o complete reliance on domain knowledge.

o requires extensive reviews of entire data.

o can only identify known anomalies.
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Aviation anomaly detection literature

Supervised learning:

Taking advantage of recent developments in deep learning and recurrent neural networks to tackle the 
reliance on the domain knowledge.

Jankiraman (2018), KDD.
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Aviation anomaly detection literature

Supervised learning:

Taking advantage of recent developments in deep learning and recurrent neural networks to tackle the 
reliance on the domain knowledge.

Cons:

o can only identify known anomalies.

o creating labels for data requires huge  effort from
subject-matter experts and is largely expensive
and impractical.

Hence, unsupervised learning or semi-supervised
learning are the only feasible choices.

Jankiraman (2018), KDD.
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Aviation anomaly detection literature

Unsupervised learning:
Using deep auto-encoders to identify anomalies without the need for labels.

𝒥!"#$ = 𝔼%! 𝑧 𝑥 log 𝑝&(𝑥 ∣ 𝑧) −

𝛽KL 𝑞' 𝑧 𝑥 || 𝑝& 𝑧

Memarzadeh et al. (2020), Aerospace, 7(8), 115.

reconstruction quality

distance of posterior and prior

Acronyms: 
CVAE: Convolutional Variational Auto-Encoder
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Aviation anomaly detection literature

Unsupervised learning:
Using deep auto-encoders to identify anomalies without the need for labels.

𝒥!"#$ = 𝔼%! 𝑧 𝑥 log 𝑝&(𝑥 ∣ 𝑧) −

𝛽KL 𝑞' 𝑧 𝑥 || 𝑝& 𝑧

Identifying anomalies: 

𝜁( = 𝑥( − 4𝑥( )
), 𝑖 ∈ 1, … , 𝑁

𝑡ℎ𝑟 = 𝔼 𝜁 + 𝛼𝜎 𝜁

Memarzadeh et al. (2020), Aerospace, 7(8), 115.

reconstruction quality

distance of posterior and prior

Acronyms: 
CVAE: Convolutional Variational Auto-Encoder
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Aviation anomaly detection literature

Memarzadeh et al. (2020), Aerospace, 7(8), 115.

Unsupervised learning:

Using deep auto-encoders to identify anomalies without the need for labels.

Cons:

o Low precision, which means high
number of false positives and low
reliability.

o It is not easy to extend to multi-class
anomaly detection.

our model
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How to improve the reliability of unsupervised learning

Training CVAE (our model) only on nominal data improved the performance significantly:

o 36.8pp higher precision
o 27.3pp higher recall

Takeaway: how to take advantage
of minimally labelled data that are
available?

Memarzadeh et al. (2020), Aerospace, 7(8), 115.
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Semi-supervised learning: does it actually work?

Research objective: how to take advantage of all available data.

The data, 𝑋, is divided into:
o Labelled set, 𝑋! , 𝑦!
o Unlabeled set, 𝑋"
o 𝑋" ≫ 𝑋!

Unsupervised learning ignores 𝑦#,
while supervised learning ignores 𝑋".
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Semi-supervised learning: does it actually work?

Research objective: how to take advantage of all available data.

The data, 𝑋, is divided into:
o Labelled set, 𝑋! , 𝑦!
o Unlabeled set, 𝑋"
o 𝑋" ≫ 𝑋!

Unsupervised learning ignores 𝑦#,
while supervised learning ignores 𝑋".

We implement two models:
(1) M1+M2: encoding of the data is unsupervised.
(2) CCLP: propagates label from 𝑋! to 𝑋" using
graph theory and enforces compact clustering of
data of same class in the feature space.
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Anomaly detection case study based on real flight data

Each data instance is 160-s recording of 19 variables during approach of a commercial aircraft to landing. 
Attributes cover a variety of systems, including the state and orientation of the aircraft, positions and inputs 
of the control surfaces, engine parameters, and auto pilot modes and corresponding states.

Data from: https://c3.nasa.gov/dashlink/projects/85/
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Anomaly detection case study based on real flight data

Each data instance is 160-s recording of 19 variables during approach of a commercial aircraft to landing. 
Attributes cover a variety of systems, including the state and orientation of the aircraft, positions and inputs 
of the control surfaces, engine parameters, and auto pilot modes and corresponding states.

Training data consists of 18,313 samples falling into four classes:
1. Nominal (66.7%)
2. Speed High (22.9%)
3. Path High (7.2%)
4. Flaps Late (3.2%)

Separate test data of 6105 samples is used
for evaluating the models.

Data from: https://c3.nasa.gov/dashlink/projects/85/
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Anomaly detection performance

Both semi-supervised models outperform the 
state-of-the-art supervised model:

o CCLP achieve 72.2% accuracy with only 
100 labeled data (0.55% of total), while 
DT-MIL reaches only 31.4%.
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Anomaly detection performance

Both semi-supervised models outperform the 
state-of-the-art supervised model:

o CCLP achieve 72.2% accuracy with only 
100 labeled data (0.55% of total), while 
DT-MIL reaches only 31.4%.

The confusion matrix comparison between
M1+M2 and CCLP models show that CCLP
performs better on anomaly classes.
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Feature importance with random permutation 

Using the trained model, we can identify the most important features for each class of anomaly.

𝐹1 = 2×
precision × recall
precision + recall

precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

Acronyms: 
TP: True Positive
FP: False Positive
TN: True Negative
FN: False Negative
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Latent space configuration: the superiority of the CCLP approach

Both figure show 2D visualization of the 256D latent space of M1+M2 and CCLP models using t-Distributed 
Stochastic Neighbor Embedding (t-SNE), color-coded based on the actual class of the data.
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Latent space configuration: thinking about the next steps

We evaluate the relationship between clusters shaped in the latent space and the prediction uncertainty of 
the classifier. These results suggest a novel active learning strategy for selecting the most informative data to 
be labeled in future efforts.
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Our newest endeavor: best of both worlds

Key idea: Do not sacrifice the compact clustering for the reconstruction quality.
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Nomenclature: 
𝑁 = 𝑁< + 𝑁=: Total number of data.
𝑇,𝐻: Optimal and estimated transition functions, respectively.

𝑆: Step of the Markov chain on the graph.
𝑤%, 𝑤,, 𝑤4: Hyper-parameters tuning the weights of classification, clustering,

and reconstruction losses, respectively.
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Improvement in accuracy of anomaly detection
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Improvement in the latent space configuration: training set

Color-coded by 
the actual class

Color-coded by 
the formed clusters

CCLP iSAD

40% of data lied in
the uncertain cluster

7.5% of data lied in
the uncertain cluster

Nominal
Path High
Path High
Flaps Late
Uncertain
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Improvement in the latent space configuration: testing set

Color-coded by 
the actual class

Color-coded by 
the formed clusters

CCLP iSAD

Central cluster is 
mixed with the 
minority class cluster

8.6% of data lied in
the uncertain cluster

Nominal
Path High
Path High
Flaps Late
Uncertain
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Concluding remarks and next steps

We showed that semi-supervised learning works, and it is superior to supervised learning when only a 
limited number of labeled data is available:

o CCLP achieves 72.2% accuracy with only 0.55% of data labeled, while the performance of DT-MIL is 
31.4%.
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Concluding remarks and next steps

We showed that semi-supervised learning works, and it is superior to supervised learning when only a 
limited number of labeled data is available:

o CCLP achieves 72.2% accuracy with only 0.55% of data labeled, while the performance of DT-MIL is 
31.4%.

Our newest model iSAD reaches 86% accuracy with 5% of data labeled, and outperforms M1+M2 (81%), 
CCLP (80%) and DT-MIL (54%). 
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Concluding remarks and next steps

We showed that semi-supervised learning works, and it is superior to supervised learning when only a 
limited number of labeled data is available:

o CCLP achieves 72.2% accuracy with only 0.55% of data labeled, while the performance of DT-MIL is 
31.4%.

Our newest model iSAD reaches 86% accuracy with 5% of data labeled, and outperforms M1+M2 (81%), 
CCLP (80%) and DT-MIL (54%). 

The combination of enforcement of compact clustering in the latent space via graph theory and improving 
the reconstruction quality further enhanced the interpretability and explainability of the model:

o Latent space configuration opens avenues for deploying an active learning strategy to identify the 
most informative data for future labeling by subject matter experts.
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Concluding remarks and next steps

We showed that semi-supervised learning works, and it is superior to supervised learning when only a 
limited number of labeled data is available:

o CCLP achieves 72.2% accuracy with only 0.55% of data labeled, while the performance of DT-MIL is 
31.4%.

Our newest model iSAD reaches 86% accuracy with 5% of data labeled, and outperforms M1+M2 (81%), 
CCLP (80%) and DT-MIL (54%). 

The combination of enforcement of compact clustering in the latent space via graph theory and improving 
the reconstruction quality further enhanced the interpretability and explainability of the model:

o Latent space configuration opens avenues for deploying an active learning strategy to identify the 
most informative data for future labeling by subject matter experts.

The reconstruction capability of the new model allows us to evaluate the robustness to perturbations in the 
input space and improve it accordingly.
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